PGI® 2010 Compilers & Tools

Dave Norton Craig Toepfer
Dave.norton@pgroup.com Craig.toepfer@pgroup.com
WwWw.pgroup.com WWW.pgroup.com

NERSC/OLCF/NICS Cray XT5 Workshop
Lawrence Berkeley National Lab
February 2010

The Portland Group®

HPC Hardware Trends

Today: Clusters of Multicore x86
Tomorrow? Clusters of Multicore x86 + Accelerators

100.0%

90.0% -

80.0% A

500 60.0% -

[] Custom

B RISC/UNIX
[J Vector

M |tanium

B 64-bit x86
[32-bit x86

50.0% -

40.0% A

30.0% A

20.0% -

10.0% -

OO% I I I I I I I | | | I
J1n-94 1un-96 .111-98 Jun-00 Jun-0?2 Jun-04 Jun-06 .Jiuun-08

3

L “0-,\\
LR Y _\ g
BN e

S

. The Portland Group®

"N

R RO,
PGl Workstation / Server / CDK

Linux, Windows, MacOS, 32-bit, 64-bit, Intel 64, AMD64
UNIX-heritage Command-level Compilers + Graphical Tools

—.

PGI WORKSTATION

Parallel Fortran, C and C++

Compiler ~ Language Command
PGF95™ Fortran 95 w/some F2003 pgf95
PGCC® ANSI C 99, K&R Cand GNU gec Extensions ~ pgee
PGC++® ANSI/ISO C+ pqCC
PGDBG® MPI/OpenMP debugger pgdbg

PGPROF® MPI/OpenMP profiler paprof

Session Edit View Bookm

grandcanyon:%

- BX]

File Settings Processes Miew Sort Search Help
baroclinic. = =
. e s id ¢ [Find: ’?J b oqp [HutSput: Seconds ’?J R QY
™ pGDB e Portland Group rof.4p.out ini
Eile Settings [Darta Window Control = = —
; P Line campileflbaraclinic. f40 acale Seconds
o B> aYW U L =]
@®® 103 FT = @ d
Theead Grid | summary | ; 1304
vl [1305 bid = this_blockilacal_id
1A Line n 1306
1307 oo oo =
1308 |1 —
1305 |1 horizontal diffusion HDiTT(T)
1310 |1
;11—
= 1312
1313 call hdiffedk, WORKN, TMIX, UMIX, WMIX, this_hlock) - -
1314
@©® 1315 | FT = FT + WORKN | o.s 0 0.024242 -
1316
() 1317 it (1diag_glahall then
- @ 1318 it (partial_hottom_cells) then
®@ 19319 do r=1,nt
®® 1320 where (k <= KMT{:,:,bid)) & - -
1321 DIAG_TEACER_HDIFF_20(:,:,n,bid) = & |
1322 DIoG TEACER_HDIFF_20¢:.:.n,hid) & hadll
[4] [| [»]
Sart By Lin
1. Intensity = 0.40
: 2. Loop notwectorized: multiple blocks
Yoo oar - Mectorization Hint: Try splitting the loops or converting conditional blocks into a simpler form
: in routine baroclinic_tracer_update_ in file compile/baroclinic.fo0
1 #saa:
: aroclinic.f90 was compiled
|podbg T -
|| #5244 = = =
et Th Parallelism l Histogram ! @Eump”er Feeﬂﬂacﬂ l System Information J
a {Pea 9 Profiled: ./pop on Tue Jun 30 12:27:16 PDT 2009 | Profile: ./pgprof.4p.out
| T | (o] Th J = S e e
-] l:% . podhg [al1] O vI
Stopped at line 544 (address OxdldGed) infile fhomefmiles/PESdemos!POP_WS_Linux/pop/paifdemo_padbg/compile/baroclinic.f40 I

=

53}

T
\.ss.._:ﬁ;o\r e The Portland Gr Ollp®

J'-;g. POP {Debugging) - Microsoft ¥Yisual Studio (Administrator)

File Edit “ew Project Buld Debug Tools Test ‘Window Help
H-gfg#EaiE- 630 R 9-6-8-E/ b ow -|[winzz -|| 2% - RERXBEDO-
Polo@ @ 5= [;E = | Hex % | 3~ 5 Process: [3272] POR. exe + Thread: [3080]0 - v Stack Frame: hariz_grid_internal{) Line 958 in = _
M grid.fgl]} baroclinic.F30 | PoR.Fa0 [Vl - clution Explaorer - Salution PO
942 =
943 do 3 = 1,ny global [Solution 'POP' (3 projects) -
944 ULAT G(:,3) = [-90.0_rS + j*dlat)/radian B~ 23 netedf_c
045 enddo 1 Header Files
Q46 1 Resource Files
=T L 1 Source Files
045 ! =] netcdf_fa0
9459 ! galeulate grid spacings and other quantities Lj Include File.s
250 ! comwpute here to avoid bad ghost cell values due Lo dropped land & Resource. Files
951 | hlocks B [Source Files
- Faf netedf.Fa0
S5z !)
E Fﬁ typesizes, FA0
=5
ol = (A POP
954 -)
| [Include Files
955 else ! not latlon only 1 Resource Files
258 =)+ [= Source Files
| 957 '$OMF PARALLEL DO FRIVATE (this block, i, j, ig, jg, lathalfy | = 7 ¢ advection.fa0
o) 958 do n=1,nblocks clinic 7ol baraclinic.Fo0
9590 e faf barotropic.fa0
Qa0 this_bhlock = get_block(blocks_cliniein),ny e Fﬁ blocks.Fa0
DBl e Fﬁ boundary. Fa0
962 do j=1,ny _block e fa broadcast.fao
963 jg = this block%i globi{y) e Aad communicate . Fa0
a54a qml o= g - 1 e faf constants.Fa0
965 if {jml < 1) jwl = ny global 72d) current_meters.f30
966 R | || —— fa diagnostics.Fan
= . g0 i=1,nx block e GEN | distrib_ution.FgD
i Crwr Fﬂ :omaln.FQD f
----- faf daommain_size.f90
%% i =
969 ! caleulate grid lengths Fﬁ drifters.fom
970))
----- faf exit_mod.fa0
N | | I fa Forcing.Foo
97z HTH(i,j,n) = dlon*radius/radian ! convert to cm b Fﬁ Forcing_ap.Fa0
973 HTE(i,j,n) = dlat*radius/radian ! convert to cm _ILI Fﬁ Forcing_coupled.Foo
oy B N S U S Y U
7 - Fag Forcing_pt_interior.F90
I I ol Fepsimm o imbepioe FOO LI
| N | | I | Cakegory | Mame | Location | Pricrity | Suspend *| | | Mame | Language *|
o 3080 || wworker Thread i] hariz_grid_internal Motraal 0 (e horiz_grid_internal() Line 958 in "grid.FO0" address: 0x4808EA Fartran
3804 || warker Thread 1 hariz_grid_internal Mormal 0 init_grid2() Line 400 in "grid.F90" address: 0x487CC1 Fartran
4092 || wworker Thread 2 Motraal 0 initialize_pop() Line 146 in "initial.fa0" address: Dx4F1495 Fartran
4040 || warker Thread 3 Mormal 0 popi) Line 79 in "POP.FA0" address: 0xS1E94F Fartran
- -
||§_‘Z-;|F\utos Iéj Locals ||_;Pr0cesses |,§}Threads |@Watch 1 | 2y Call stack |,_:,38reakp0ints I'ﬂ Command Window I!jlmmediate window ||:?| CukpuE |
Ready Ln 981 Col2 Cha TR D
DT o e, O TSN : ' LNe roruana vl Ollp
. A s .

PGI Compilers & Tools

o Compilers & Tools dedicated to scientific computing, where
speed of generated code is #1 criteria

o Are focused around parallel/optimization technologies

State of the art Local and Global Optimizations
Superior automatic SIMD vectorization

Support of the latest OpenMP 3.0 standard
Automatic loop parallelization for multi-core CPUs
Whole-program and profile-guided optimizations

PGI Unified Binary technology to target different flavors of x64
architecture or heterogeneous architectures with a single binary

Graphical tools to Debug/Profile Multithreaded/Multiprocess applications
o Starting with PGl version 9.0

PGI Accelerator programming model implementation to address the
GPGPU programming challenge

The Portland Group®

PGI® 2010 New Features

d PGI Accelerator™ Programming Model
= High-level, Portable, Directive-based Fortran & C extensions (no C++, yet)
= Supported on NVIDIA CUDA GPUs
 PGI CUDA Fortran
= Extended PGI Fortran, co-defined by PGI and NVIDIA
= Lower-level explicit NVIDIA CUDA GPU programming

d PVF Windows/MSMPI Cluster/Parallel Debugging

= Debug Fortran & C MSMPI cluster applications
= PGl Accelerator and CUDA Fortran support

O Compiler Enhancements
= F2003 - several new language features
= Latest EDG 4.1 C++ front-end — more g++/VC++ compatible
= AVX code generation, code generator tuning

0 PGPROF Enhancements
= Uniform performance profiling across Linux, MacOS and Windows
= X64+GPU performance profiling
= .Updated Graphical |

Y ,\v\‘f\"?}' e

The Portland Group®

PGI 2010 Compilers
F2003/C++ Language Support

JPGI Fortran 2003 incremental features

= |nitial release of PGI 2010: pointer reshaping, procedure
pointers and statement, abstract interfaces, ieee_exceptions
module, ieee_arithmetic module

= Coming later in PGI 2010: Object-oriented features

JPGC++/ PGCC enhancements

= EDG release 4.1 front-end with enhanced GNU and Microsoft
compatibility, extern inline support, improved BOOST support,
thread-safe exception handling

The Portland Group®

Intel AVX Support

JIntel Advanced Vector Extensions

= New instructions
= Wider vector registers, up to 2X floating point performance

dPGI FO3/C/C++ compilers will be ready when
AV X-enabled systems become available

dCan run with Intel simulator today
= For those who like to experiment or test for correctness

The Portland Group®

Invoking AVX on PGI 10.0

» pgfortran —tp sandybridge-64
 GNU Binutils 2.19.51 or newer

 Intel Software Development Emulator

— http://software.intel.com/en-us/articles/intel-software-
development-emulator/

The Portland Group®

AVX Example: Vector Add

FORTRAN

subroutine vadd(a, b, ¢, n)

real a(n), b(n), c(n)

SSE

x.LB1_438:
movups (%r10,%rcx), Y%oxmm0O

movups (%r9,%rcx), %oxmm1

AVX

.LB1_477:
vmovups (%r9,%rcx), %ymmO

Vaddps (%r10,%rcx), Y%oymmO0, %ymm1

integer i, n
doi=1n addps %xmmO0, %xmm1 vmovups %ymm1, (%r8,%rcx)
. . . movups %xmm1, (%r8,%rcx vmovups 32(%r9,%rcx), %ymmO
¢(i) = a(i) + b(i) ps. %oxmmd, (%r8,%6rex)
dd movups 16(%r10,%rcx), %xmmO vaddps 32(%r10,%rcx), %ymmo0, %ymm1
enddo
) movups 16(%r9,%rcx), %xmm1 vmovups %ymm1, 32(%r8,%rcx)
en
addps %xmmo0, %xmm1 | addq $64, %rex
movups %xmm1, 16(%r8,%rcx) subl $16, Y%eax
addq testl %eax, Y%eax
T I LB1_477
subl
$8, %eax
testl
Y%eax, %eax
ig LB1_438

The Portland Group®

Cross-Platform and Mobile
HPC Development

A PGI Workstation® on Linux, MacOS & Windows

= Same C, C++, and Fortran compilers on all platforms
= PGI Accelerator support and CUDA Fortran
= MPI, OpenMP, PGDBG”, PGPROF"

1 Cross-platform licensing

= One license can cover all platforms
= Floating license only

d'Borrow' licensing

= No separate license needed to work off-line on your notebook
= Check out a floating license for your notebook for home or travel

PR S— -

The Portland Group®

Multicore X64 Performance

% R 2010 SPEC{p2006
E est. 247
= It 111 SPECfp20
6 |lest. p2.3
FGI 2010 SPECfp2006 276

Intel Mehalem

e SPECfp2006 33

SPEC® and SPECfp® are registered trademarks of the Standard Performance Evaluation Corporation (SPEC) ()

Competitive benchmark results stated above reflect results performed by The Portland Group during the week of November 8th, 2009.

The Intel Nehalem system used is a Dell R610 using 2 Intel Xeon X5550 with 24GB DDR3-1333. The AMD Istanbul system is a kit built 2 Opteron 2431
system with 32GB DDR2-800. Since this system is not generally available, the AMD results should be considered estimates.

The Portland Group®

http://www.spec.org/

SPEC and the —-fast flag

o Earlier version of the SPEC benchmark only allowed 4
compilers flags for the “base” run. To accommodate this PGl
Introduced the —fast flag and used that to enable numerically
safe, best practices flags.

o Intel and Pathscale also have convenience flags — but they
differ from PGI in the optimizations they invoke and the side
effects.

o PGI’s —fast is conservative and intended for everyday use. Intel
and Pathscale’s convenience flags are intended to maximize
SPEC performance without causing errors in SPEC codes. For
regular user codes — YMMV

The Portland Group®

-fast comparison - PGI

 PGI. —fast typically includes these options:
« —02 Specifies a code optimization level of 2.

« —Munroll Unrolls loops, executing multiple instances of the loop during each
iteration.

« —Mnoframe Indicates to not generate code to set up a stack frame.

« —Mlre Indicates loop-carried redundancy elimination.

« —Mpre Indicates partial redundancy elimination.

These additional options are also typically available when using —fast
for 64-bit targets :

« —Mvect=sse Generates SSE instructions.

« —Mscalarsse Generates scalar SSE code with xmm registers; implies —
Mflushz.

« —Mcache_align Aligns long objects on cache-line boundaries.
« —Mflushz Sets SSE to flush-to-zero mode.

The Portland Group®

-fast comparison - Intel

Intel: -fast This option maximizes speed across the entire program.
* Linux: -ipo, -O3, -no-prec-div, -static, and —xHost

* [PO - Interprocedural optimization between files

« NO-PREC-DIV - With some optimizations, such as -xSSE2 (Linux) the compiler
may change floating-point division computations into multiplication by the reciprocal
of the denominator. For example, A/B is computed as A * (1/B) to improve the speed
of the computation.However, sometimes the value produced by this transformation is
not as accurate as full IEEE division. When it is important to have fully precise IEEE
division, use this option to disable the floating-point division-to-multiplication
optimization. The result is more accurate, with some loss of performance.

If you specify -no-prec-div it enables optimizations that give slightly less precise
results than full IEEE division.

« STATIC - Prevents linking with shared libraries — it causes the executable to link all
libraries statically

 PGI Equivalents:
IPO => -Mipa=fast
NO-PREC-DIV => -Mfprelaxed

= [IC => -Bstatic 8 . .
‘S;I' ATIC 9 Bsia‘t B The Portland Group®

-fast comparison - Pathscale

« Pathscale: -OPT:Ofast and -Ofast
* The option -OPT:Ofast is equivalent to
-OPT:roundoff=2:0limit=0:div_split=ON:alias=typed.
« -Ofast is equivalent to
-O3 -ipa -OPT:Ofast -fno-math-errno.
“With -O3 -OPT:Ofast and -Ofast, you should look to see if the results are accurate.”
NO-MATH-ERRNO - turns off IEEE floating point error exception handling

ROUNDOFF=2 — allows for fairly extensive code transformations that may result in
floating point round off or overflow differences in computations

DIV_SPLIT=0ON - Allows conversion of x/y into x*(recip(y)) => less accurate
ALIAS=TYPED — Assumes that pointers don’t point to the same memory.
IPA — Interprocedural analysis

-O3 — additional optimizations that may or may not result in improved performance and
may or may introduce numerical errors.

PGl Equivalents:
NO-MATH-ERRNO => -Knoieee
ALIAS=TYPED => -Msafeptr

-O3 = includes zero cos! y
| _.__,-:;% P T The Portland Group®

Optimized SPEC

Code: Leslie3D

Base flag: -fast —Mipa=fast,inline

Base performance: 350s

Optimized flag: -fast —Mipa=fast,inline -Mvect=fuse
Optimized performance: 327s

Reason the code runs faster: Fuses loops together for increased

vectorization.

The Portland Group®

Optimized SPEC

Code: Hummer

Base flag: -fast -Mipa=fast,inline

Base performance: 402s

Optimized flag: -fast —Mipa=fast,inline -Msafeptr
Optimized performance: 383s

Additional flags: -Mvect=partial

Additional flags performance: 297s

Reason the code runs faster. Once the compiler knows that pointers don't
overlap, it can vectorize the code for better performance

Reason additional flag: runs faster: Loop has conditionals in it which.
Compiler does’t generally vectorize these types of loops as metrics show it
often isn’t helpful. However — in the case of this code it is beneficial.

The Portland Group®

Optimized SPEC

Code: MCF

Base flag: -fast —Mipa=fast,inline

Base performance: 573s

Optimized flag: -fast —Mipa=fast,inline —Msmartalloc=huge
Optimized performance: 282s

Reason the code runs faster: Code allocates a large block of memory at

initialization and then manages that memory itself

The Portland Group®

Optimized SPEC

Code: Gromacs

Base flag: -fast —Mipa=fast,inline

Base performance: 620s

Optimized flag: -fast —Mipa=fast,inline -Mfprelaxed
Optimized performance: 400s

Reason the code runs faster: Code does less precise arithmetic then then
IEEE standard. This reduction results in improved performance while not
causing enough loss of precision to effect the programs answers

substantially.

The Portland Group®

Important PGI Compiler Options

-fast Includes “~fast -Mvect=sse -Mcache align -Mnoframe
-Mlre”
-Mipa=fast Enable inter-procedural analysis (IPA) and optimization
-Mipa=fast,inline
Enable IPA-based optimization and function inlining

-Mfprelaxed Reduced precision arithmetic operations
-Minline Inline functions and subroutines
-Mconcur Try to auto-parallelize loops for SMP/Dual-core systems
-mp [=align] Process OpenMP/SGI directives and pragmas
-mcmodel=medium
Enable data > 2GB on AMD64/EM64T running 64-bit Linux
-Minfo Compile-time optimization/parallelization messages
-Mneginfo Compile-time messages indicating what prevented an optimization
-help Compiler options and usage

—fast —Mipa=fast -Minfo usually best for “compile-and-go”

The Portland Group®

Byteswapio Optimization

ORIGINAL MODIFIED
Open(200,status="new’,file="binary .data, Open(200,status="new’,file="binary .data,

& form="UNFORMATTED & form="UNFORMATTED,

& recl=numdouble* 8, access="direct’) & recl=numdouble* 8, access="direct’)
write(200,rec=1) doublearray istat = setvbuf (200,0,numdouble* 8,user_buf)
Close(200) write(200,rec=1) doublearray

Close(200)

. Use setvbuf to override default runtime buffer
settings.

 On the XT5 setvbuf preferred over setvbuf3f.

. See the fortran reference manual for more
Info.

The Portland Group®

Availability and
Additional Information

o PGI 2010 Compilers & Tools — available now! See
for details

o PGl Accelerator programming model — supported for x64+NVIDIA
targets in the PGI 2010 F95/03 and C99 compilers, available now;
see for a detailed specification,

FAQ and related articles and white papers

o CUDA Fortran — supported on NVIDIA GPUs in PGI 2010 F95/03
compiler; see for
a detailed specification

The Portland Group®

http://www.pgroup.com/
http://www.pgroup.com/accelerate
http://www.pgroup.com/resources/cudafortran.htm

Task Example

.Uses OpenMP 3.0 tasks

*Actual use by PGI compiler when specifing the —
Mcuda=emu compiler option(CUDA Fortran
emulation mode)

*Analogous to the thread execution control unit on
NVIDIA GPUs

The Portland Group®

What is the PGI Accelerator
Model?

- High-level, Portable, Directive-based Fortran & C
extensions (no C++, yet)

- Supported on NVIDIA CUDA enabled GPUs

.- Supported on Linux, MacOS and Windows

The Portland Group®

What is CUDA Fortran?

- CUDA Fortran is an analog to NVIDIA's
CUDA C language

- Co-defined by PGI and NVIDIA, implemented in
the PGI 2010 Fortran 95/03 compiler

.- Supported on Linux, MacOS and Windows

. CUDA Fortran gives HPC developers direct
control over all aspects of GPU programming

The Portland Group®

PGI Accelerator vs CUDA Fortran?

. The PGI Accelerator programming model is a high-level implicit
model for x64+GPU systems, similar to OpenMP for multi-core

— Supported in both the PGI F95/03 and C99 compilers
— Offload compute-intensive code to a GPU accelerator using directives
— Programs remain 100% standard-compliant and portable

— Makes GPGPU programming and optimization incremental and
accessible to application domain experts

- CUDA Fortran is a lower-level explicit model for direct control of:
— Splitting source into host code and GPU kernel subroutines/functions

— Allocation of page-locked host memory, GPU device main memory, GPU
constant memory and GPU shared memory

— All data movement between host memory and GPU memory hierarchy
— Definition of thread/block grids and launching of compute kernels

— Synchronization of threads within a CUDA thread group

— Asynchronous launch of GPU kernels, synchronization with host CPU
— All CUDA Runtime API features and functions

The Portland Group®

